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Abstract. An orbit tracing technique was used to generate current sheets for three magne-
totail models. Groups of ions were followed to calculate the resulting cross-tail current.
Several groups then were combined to produce a current sheet. The goal is a model in
which the ions and associated electrons carry the electric current distribution needed to
generate the magnetic field B in which ion orbits were traced. The region -20 R E < x < - 14

R E in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on
identifying the categories of ion orbits which contribute most to the cross-tail current and
on gaining physical insight into the manner by which the ions carry the observed current
distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout
the current sheet, and ions that mirrored near the Earth all were needed. The current sheet
structure was determined primarily by ion magnetization currents. Electrons of the

observed energies carried relatively little cross-tail current in these quiet time current
sheets. Distribution functions were generated and integrated to evaluate fluid parameters.
An earlier model in which B depended only on z produced a consistent current sheet, but it

did not provide a realistic representation of the Earth's middle magnetotail. In the present
study, B changed substantially in the x and z directions but only weakly in the y direction
within our region of interest. Plasmas with three characteristic particle energies were used
with each of the magnetic field models. A plasma was found for each model in which the
density, average energy, cross-tail current, and bulk flow velocity agreed well with satel-
lite observations.
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1. Introduction

Current sheets are present in the Earth's magnetotail, magneto-

pause and bow shock, and in many other space plasmas. The adia-

baticity parameter is defined as I¢2 = Rc/P, o , where Rc is the

magnetic field line radius of curvature and Pzo is the gyroradius of

an average current-carrying particle at z = 0, the center of the cur-

rent sheet [Bfichner andZelenyi, 1989]. The criterion _¢< 1 for the

principal current-carrying particles may be used to define a thin

current sheet. Such particles do not follow simple guiding center

orbits. The principal distinction between the sheet-like structures

studied here and a ring current is that the magnetic field in a current

sheet must be generated by particles within the sheet. In contrast,

the Earth's internal dipole dominates the magnetic field in the radi-

ation belts. It therefore is necessary to consider local plasma cur-

rents to model the current sheet, while it may be possible to neglect

local currents in the radiation belt. The goal of the present work is

to investigate the physical structure of the thin current sheet in the

Earth's magnetotail.

Consistent Orbit Tracing (COT)

Several methods have been used to construct models of the

magnetotaii. Each method uses a different set of basic assumptions

and therefore provides different and often complementary insights

into the physical structure of a current sheet. Simulations and some
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orbit tracing methods involve injecting particles into a spatial

region with fixed boundaries. Knowledge therefore is needed about

the source of particles and the boundary conditions. Initial mag-

netic and electric field configurations within the region of interest

are used to start a simulation, but detailed knowledge of these

fields is only needed at the boundaries. Electric and magnetic fields

are calculated self-consistently within the region of interest as the

system evolves in time.

In contrast, the COT method requires that the basic magnetic

and electric fields are known throughout region of interest. How-

ever, very little is assumed about particle sources or particle bound-

ary conditions. Our selection of the COT technique was based on

the assumption that the global magnetic field models give a good

description of the magnetotail but that less is known about particle

sources. One major limitation is that only steady state conditions
can be studied.

The COT technique is equivalent to solving the Vlasov equa-

tion, so involves the motion of a noninteracting particle in a field

generated by all other particles. Wave-particle interactions and

instabilities are not considered in this treatment. The results pre-

sented here are confined to the region -20 R_ < x < -14 R E , 0 < Izl

< 2 R E in geocentric solar magnetospheric coordinates. This region

of interest was selected because AMPTE/IRM and ISEE 1 data

were available. The major task in the COT procedure is to find a

distribution of ions and electrons that will as nearly as possible

generate the preselected magnetic field. In some respects the

method is similar to a BGK solution [Bernstein et al., 1957]. The

BGK method is based on the assumption that a particle distribution

can be found that will, through Poisson's equation, generate a wide

variety of preselected electric field structures. The COT method is
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based on the assumption that a particle distribution can be found

that will, through Ampere's law, generate a variety of preselected

magnetic field structures. If a realistic tail magnetic field model has

been picked, then we assume that some distribution of ions and

electrons with energies and densities similar to those measured in

the tail can be found to produce this field.

The first step was to follow many ion orbits in the original mag-
netic and electric fields. The use of an error limit of 10 -10 for tra-

jectory tracing assures the inclusion of all nonguiding center
effects. This detailed inclusion of orbital information is one of the

strengths of the COT technique. Each group in the present study

consisted of 1000 ions. Earthward drift was produced by a uniform
dawn to dusk electric field. All current sheet ions were traced as

they came in from tailward of the region of interest and drifted

earthward completely through this region. No physical boundaries

exist in the system except for the very rare particles that hit the
Earth.

The cases described here started with monoenergetic ions. The

angular characteristics of a biMaxwellian were used to randomly

select an initial phase and pitch angle for each ion in the group. Ion

energies change as particles drift in the electric field, but ions in

each group remain in a fairly narrow energy band. Monoenergetic

ions were used for this particular study because each such group

tends to be dominated by particles that follow one of the orbit cate-

gories that are described below. A principal goal of the study was

to find which orbit types are needed to produce a typical magneto-

tail current sheet. When Maxwellian or other broadly distributed

ion groups are used, each group contains a mixture of ions follow-

ing many different types of orbits. It therefore is harder to gain

physical insight into the kinds of orbits that are needed to generate

each model magnetic field.

As described later, a number of assumptions were introduced in

order to add electron currents. The ion plus electron groups were

then combined using a linear least squares fitting routine to find

panicles which will generate the preselected magnetic field.

One-Dimensional Results

The COT technique was used by Kaufmann and Lu [1993] to

construct an approximately consistent one-dimensional (I-D)

model magnetotail. Although orbits were traced in three dimen-

sions, the model is referred to as a I-D magnetotail because the

modified Harris current sheet magnetic field was used [Harris,

1962]. The modified Harris model consists of a constant Bzo and a

component Bx(z ) = Bxotanh(z/L) that varies only in the z
direction.

Even though nearly consistent 1-D current sheets were found,

the model did not provide a reasonable approximation to the mag-

netotail in our region of interest. The problems with the modified

Harris model were that it required a density of several-keV ions

that was higher than is observed, and it required streaming or

anisotropies at the edge of the current sheet that were much larger

than those observed. These ate inherent problems with any consis-

tent 1-D model of the middle magnetotail. An unrealistically high

density is needed because there is no net cross-tail drift of trapped
particles in a 1-D magnetic field [Stern andPalmadesso, 1975]. We

were unable to generate modified Harris current sheets with typical

magnetotail field strengths using ions and electrons with the ener-

gies observed unless the density was 1 cm -3 or larger. The average

obsea-ved density in the -20 R E < x < -14 R E region of interest is
approximately 0.3 cm -3 [Baumjohann et al., 1989; Huang and

Frank, 1994b].

It is well known that streaming or a strong anisotropy, near the

firehose instability limit, is needed at the edge of any I-D current

sheet to produce force balance [Rich et al., 1972; Cowley, 1978].

The difficulty is that 1-D models have no x dependence, so require

anisotropies much larger than those observed to balance the j x B
force or equivalently, in a consistent model, the tension force of the

sharply curved magnetic field lines. For these reasons, we con-

cluded that no I-D current sheet can produce a reasonable model of

the middle magnetotaii.

The present paper shows that the above problems are not

present in a magnetic field model which has both x and z depen-

dence. Section 2 describes the magnetic field models used, section

3 describes the ion orbits that exist in the model fields, and section

4 presents the basic COT results. Those fluid parameters that can

be most directly compared to satellite measurements are discussed

in section 5. Finally, section 6 summarizes the conclusions. Future

papers will present the model distribution functions, analyze more

complex fluid characteristics such as force balance and energy

flow, and consider the question of uniqueness.

2. Tail Model

A simple magnetic field model was developed that provides a

good representation of the portion of the tail being studied. A sim-

plified model was needed to make accurate tracing of many ion

orbits practical. The present study used a sum of fields from an

Earth centered dipole, a ring current [Tsyganenko and Usmanov,

1982], an equilibrium or Harris-like tail field [Birn et al., 1975;

Zwingmann, 1983], and a uniform Bzo. Three-dimensional versions

of the dipole and ring current fields were used so the mirroring of

particles at low altitudes is as realistic as possible. The equilibrium

tail field is 2-D, with B varying in the x and z directions.

The equilibrium tail field module is dominant in the region of

interest. This module represents magnetic fields that are generated

by approximately isotropic particle distributions. The specific form

used was the one designated ZW by Karimabadi et al. [1990]. The

dipole and uniform Bzo are vacuum fields, so require no electric

currents in the magnetotail. The ring current is largely carried by

particles earthward of the region of interest.

The dipole field was fixed for all versions of the model. Each of

the other modules had parameters that were adjusted to generate a

magnetotail with desired properties. Adjustments first were made

so that the r parameter and the total integrated cross-tail current

would be similar to those at midnight in the Kp = 4 version of the

much more complicated T89 [Tsyganenko, 1989] magnetosphere.

An empirical magnetotail model tends to have a thicker current

sheet than is present in the actual magnetotail. Waves and flapping

of the tail broaden the apparent observed thickness obtained by

binning satellite data. McComas et al. [1986], Sanny et al. [1994],

and Zhou et aL [1995], using the ISEE 1 and 2 satellite pair, con-

cluded that the typical instantaneous scale size of the principal cur-

rent sheet is of the order of 1 RE in our region of interest. We

selected the Kp = 4 version of 1"89 to adjust r because this version

is thinner and has a larger equatorial Bz than the smaller Kp ver-
sions.

Figure 1 shows field lines in the noon-midnight meridian plane

for the 1"89 model and the three simpler models used in the present

study. Within the region of interest, characteristic scale lengths in

the z direction for the cross-tail current jy are about 0.3-0.4, 0.7,

and 1.0 R E in the models labeled thin, standard, and thick, respec-

tively. The corresponding T89 scale length is about 1.2 RE. In each
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Figure 1. Magnetic field lines in the noon-midnight meridian plane for the (a) T89 with Kp = 4, (b) thin, (c) standard,
and (d) thick magnetotail models.

case the current sheet thickness decreases by about 10% as one

moves in from x = -20 to -14 R E.

The extra uniform Bzo term was included in our model so the

magnetic field at z -- 0 could be adjusted. For the standard model,

B z at the equator dropped from 5 nT at x = -14 R E to below 3 nT at

x = -20 R E . To get the same K, the equatorial B z dropped from 6 to

about 3.5 nT in the thin model and from 4.5 to slightly above 2 nT

in the thick model. This parameter is important in determining tc

and the type of orbit that is dominant in any region of the tail.

Some uncertainty remains concerning the most appropriate

equatorial Bz to select. Huang and Frank [1994a] defined the neu-

tral sheet as the region with IBxl < 5 nT in ISEE 1 data from 1978

and 1979. They found the average B z to be approximately 7 nT in

the region -22 R E < x < -I0 RE. Fairfield [1986] used many years

of data from the IMP 6, 7, and 8 satellites taken within ±3 RE of the
estimated location of the neutral sheet. Data were divided into one

group for -20 RE < x < -10 RE and a second group that extended

from x -- -20 RE to the apogee of each satellite. This study found

B z as large as 7 nT to be uncommon in the lower altitude range, and

extremely rare beyond 20 RE. Rostoker and Skone [1993] used

consistent methods to select only clear neutral sheet crossings in

ISEE 1 data for -22 R E < x < -10 RE and in IMP 8 data for -38 RE

< x < -22 R E. Their Figure 3b shows a discontinuous drop in Bzo at

x = -22 RE, which they suggested may partly be attributable to

observations at different phases of the solar cycle. A corresponding

average Bz has not been determined for the 1985 and 1986

AMPTE/IRM data sets we have used. Nakamura et aL [1991]

selected a group of neutral sheet crossings by requiring [B I to drop

below 5 nT. Since the observations with which we will make initial

distribution function comparisons were selected from this group of

neutral sheet crossings, most have Bz in the range that was used in

the simple models. However, Nakamura et al. [1991 ] noted that the

estimated uncertainty of the measured Bz is 1 nT while other com-

ponents of B have uncertainties of only 0.1 nT in AMPTEflRM

data. This is because the satellite spin axis, along which magnetic

field calibration is most difficult, lies close to the solar magneto-

spheric z direction.

3. Orbit Types

Ion orbits in the magnetotail usually are classified according to

the particle's dynamical characteristics, for example, a chaotic, a

resonant, or a guiding center orbit [Chen, 1992]. Particle dynamics

are strongly dependent upon K. However, the cross-tail current pat-

tern carried by ions in the _ range studied here was found to be

more dependent upon the particle's minor point location than upon

the dynamic orbital characteristic. Since a primary goal was to

study the structure of a consistent current sheet, this paper catego-

rizes orbits into three groups according to mirror points. We first

define zo = mv/[qB x (zo) ], which is the point at which the radius

of curvature in the y-z plane of a particle with mass m, charge q,

and velocity v is equal to the particle's distance from the equatorial

plane. The first distinctive category consists of meandering and

other trapped particles, which return to the equatorial plane without

moving beyond Izl = 2 z o. Particles that magnetically mirror within

the principal current sheet at 2 z o < Izl < 2 R E comprise the second

category. These are sometimes called cucumber orbits [Bachner

and Zelenyi, 1989]. Finally, the third category involves particles

that mirror closer to the Earth. These are sometimes called Speiser

orbits. The following section will show that some contribution

from each of the above three orbit categories was needed to create

a consistent current sheet that realistically approximated the

Earth's magnetotail.

Sample Orbits

The sample orbits in this section show the physical manner in

which particles carry cross-tail current in the standard tail model

(Figure lc). Magnetization currents are dominant for particles that

mirror inside the current sheet [Bird and Beard, 1972; Kaufmann

and Lu, 1993]. The x-z and x-y projections of the proton trajectory

in Figures 2a and 2b show all three orbit categories. This proton

had 5 keV of energy and was located at (x, y, z) = (-18.5, 0, 0.5) R E

when tracing started. The ion mirrored once within the northern

hemisphere of the current sheet as it drifted earthward from the

starting point, became briefly trapped at Izl < 2 z o = 0.5 RE near x =
-16 to -18 RE, and then mirrored three times in the southern hemi-

sphere. The first of these three southern hemisphere mirror points

was within the principal current sheet and the other two were closer

to the Earth. The orbit then was traced backward in time from the

starting point, showing that this proton also had been trapped

between x = -29 and x ffi-20 R E. This alternation between periods

of being trapped near z = 0 and periods of magnetically minoring

at various points is typical of chaotic orbits [Ashour-Abdalla et al.,

1995].



21,450 LARSONANDKAUFMANN:STRUCTUREOFTHE MAGNETOTAIL CURRENT SHEET

2.5

1.5

,, 0.5
n-

M -0.5

-1.5

-30
2.5

a_) _.

-25 -20 -15 -10 -5

1.5

0.5
>.-

-0.5

-30

2.5

I I [ I
-25 -20 -15 -10

X, RE

1.5

,,, 0.5
tr
M -0.5

-1.5

-45
5

c)

-40 -35 -30 -25 -20 -15 -10

-5

-5

>."

4

3

2

1

0

-45 -40 -35 -30 -25 -20 -15 -10 -5

X, RE

Figure 2. (a), (b) Two projections of one proton orbit in the stan-

dard magnetotail model. Tracing started with a 5-keV proton at (x,

y, z) = (-18.5, 0, 0.5) R E. (c), (d) Tracing started with a 5-keV pro-

ton at (-16.5, 0, 1.5) R E. The arrows point to the starting locations.

the details of a trajectory and of deviations from guiding center

motion. Figure 2 also shows the most important differences

between orbits in I-D and either 2-D or 3-D models. Note that dur-

ing the last two orbit segments in Figure 2b, when the mirror point

was below x = -10 R E, the particle followed almost the same field

line as it moved down to and back from a mirror point. The same

feature is evident in Figure 2d whenever the ion mirrored below 10

RE. Protons mirroring near the Earth with energies of about 5 keV

in this magnetic field appear to simply bounce off the current sheet

[Speiser, 1965] when they reach the equator (Figure 2a). Mirror

points on the orbits immediately before and after a given current

sheet interaction are nearly the same if the particle's 1( parameter is

close to a resonant value [Biichner and Zelenyi, 1989; Chen, 1992].

The mirror points of chaotic particles, with I( well removed from

the resonant values, generally are different after each current sheet

interaction. However, in this paper all resonant and chaotic parti-

cles that mirror near the Earth are placed into the same category

because the cross-tail current distribution in the region of interest is

similar for these two dynamically different trajectory classes.

Whenever the mirror point is near Earth, the total cross-tail dis-

placement achieved in one bounce cycle is approximately equal to

2 gyroradii based on Bzo. Note that different scales are used for the

x, y, and z axes in Figure 2, so that circular motion near z = 0

appears to be stretched in the y direction. The motion of particles

that mirror at low altitudes in 2-D and 3-D models is similar to the

motion of untrapped particles in a 1-D model. In all these cases, jy
is concentrated in a sheet near z = 0 that is much thinner than is

required to consistently generate the standard model magnetotail.

Figure 2b shows that this ion drifted part way back in the nega-

tive y direction when it mirrored within the current sheet, near z =

-1.5 RE, x = -10 R E and near z = 0.7 RE, x = -14 R E. In both cases

there was a substantial net cross-tail drift during a full bounce

cycle. Similar bounce cycles are seen in Figure 2d. The fact that all

trapped and mirroring ions undergo a net cross-tail drift during

each bounce cycle is one of the most important differences

between either 2-D or 3-D and I-D models. In the 1-D models,

where both the x and y components of the canonical momentum are

conserved, all mirroring particles drift equal distances in the +y

direction near z = 0 and in the -y direction as they mirror. Self-con-

sistent 2-D and 3-D models have lower total plasma densities than

1-D models because particles that mirror within the current sheet

carry a net cross-tail current in the x dependent models.

Particles of species s that obey the guiding center equations in a

gyrotropic plasma carry a current given by

Since the -20 RE < x < -14 R E, 0 < Izl < 2 Re region was being

investigated, orbit tracing was stopped on the earthward side when

the ion crossed z = 0 at a point at least 2 gyroradii earthward ofx =

-14 RE . Similarly, tracing backward in time was stopped when the

ion crossed x = -20 Re at least 2 gyroradii beyond Izl = 2 RE. An

equatorial crossing tailward of the field line that connects to x =

-20 R E, Izl = 2 R E plus 2 gyroradii also can be used to stop back

tracing. It is evident from Figure 2 that no specific particle bound-

ary conditions were imposed at the edges of the region of interest,

and that nothing unusual happened at the starting position. Starting

points were selected to get groups of ions that were dominated by a

particular trajectory type. For example, starting the ions with an

isotropic distribution at z = 0 gives a group that begins with many

trapped ions, while no ions that start at large Izl are initially trapped.

Cross-Tail Drift and Current

Figures 2b and 2d show the physical manner by which the

bounce averaged cross-tail drift becomes relatively independent of

B x IVPs.L÷ PslI-Ps±(B • V)B1 +n q ExB (1)
Js.t. = B2 L B2 .] s s B 2

This current involves both drifts of the guiding centers vg and

a divergence-free magnetization drift v m . The small polariza-

tion drift has been neglected. The drift vg is a combination of

gradient, curvature, and E x B drifts. Curvature guiding cen-

ter drift is associated with the Psll factor in (1). The curvature

guiding center drift is large and positive near z = 0. The first

Ps_L factor in (1) represents temperature and density gradient

magnetization currents, and the second Ps.L factor in (1) is the

curvature magnetization current or orbit crowding effect. The

magnetic field gradient produces both a drift of guiding cen-

ters in the +y direction near z = 0 and a magnetization current

in the -y direction. No magnetic field gradient term appears in

(1) because the associated guiding center v s and magnetiza-

tion v m terms cancel.
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Figure 2b shows that there is a small cross-tail drift per current 1.2

sheet interaction during the periods when the ion was trapped at Izl 1.1 -

< 0.5 R E, beyond x = -20 R E. This helps to explain why the 1.0-
bounce-averaged drift velocity depends relatively weakly on orbit

type, Trapped particles make many current sheet interactions, but 0.9-

have a net cross-tail displacement per interaction that is much less 0.8-

than 2 gyroradii. Particles mirroring near the Earth have few cur-
0.7-

rent sheet interactions, but have a net displacement of nearly 2 full

gyroradii during each interaction. 0.8-

Figures 2c and 2d show another important property of magneto- 0.5-

tail current carriers. This trajectory is characterized by a series of 0.4

events in which the ion mirrors and then interacts briefly with the 0.9
current sheet. The cross-taft motion tends to increase modestly dur-

ing each current sheet interaction as the ion moves into the inner 0.8-

tail because the ion is gaining energy. However, it is more impor-

tam that the earthward drift speed is decreasing at low altitudes. 80 .7-

The ion moves earthward by as much as 10 R E during the time v
_0.6-

required to mirror when its equatorial crossing point is near x =

-30 to -40 R E. Earthward motion is only about 1 R E per mirror >_0.5-

cycle near x = -10 Re. This decrease in earthward drift is the pri- <

mary reason that the displacement between adjacent equatorial 0.4-

crossing points is mostly in the x direction in the distant tail and

mostly in the y direction in the near-Earth tail. The result is an 0.3

Alfv6n layer or wall [Ashour-Abdalla et al., !992]. A group of par- 0.7

ticles from a deep-tail source with a given average magnetic

moment do not penetrate to lower field lines.

Figures 3a, 3b, and 3c show x-z, x-y, and y-z plots of a proton

that started at (-15.5, 0, 1.0) Re with 15 keV of energy. This high

energy proton passed through both the N = 1 and N = 2 resonances.
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Figure 3. Three projections of one proton orbit in the standard
magnetotail model. Tracing started with a 15-keV proton at (-15.5,

0, 1.0) Re.
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Figure 4. Average tc for ions in the nine runs. The tc parameter was

calculated every time a particle crossed equatorial plane. Each

panel shows results for one starting energy: 1.5, 5, or 15 keV. Ener-

gies change as the particles drift.

Resonances are characterized by symmetric orbits that involve lit-

de net change in magnetic moment. A particle's magnetic moment

changes dramatically near the halfway point between resonances.

A resonant ion crosses the z = 0 plane N+I times during each cur-

rent sheet interaction [Bftchner and Zelenyi, 1989]. An individual

particle in the tail is accelerated as it drifts earthward and

duskward. Acceleration tends to increase P=o and therefore to

reduce _ for the particle. However, K tends to increase when the

particle reaches the more dipolar field lines with large R c in the

inner tail. Figure 4 shows that these two competing effects lead to a

minimum K near x = -17 R e in our models for all starting energies

used. The K parameter of the particle in Figure 3 decreased from a

little more than 0.5 at the x = -32 R E crossing, which lies near the

N = 1 resonance, to about 0.3 at -15 Re, which is near the N = 2

resonance. Note that the ion crossed z = 0 twice during each of the

two most distant neutral sheet interactions before it became briefly

trapped, and then crossed z = 0 three times during each of the four

most earthward interactions, The magnetic moment and the mirror

magnetic field changed substantially during the crossings at -25 R E

< x < -20 g e when !c was near 0.4. This behavior is typical of

highly chaotic motion halfway between resonances.
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Figures 5a, 5b, and 5c show x-z, x-y, and y-z trajectory projec-

tions for a proton that started with 15 keV of energy at (-14.5, 0,

0). Although it is unusual to last this long, the orbit shows that it is

possible for a proton to remain trapped in a very simple pattern as

it drifts earthward all the way from x = -30 R E to x = -15 R E. The

parameter changed substantially in this interval. This orbit is

referred to as a figure eight pattern because of its appearance in the

y-z projection. By following one cycle of the figure eight pattern in

Figure 5c, it is particularly easy to see that this ion always moves in

the +y direction at Izl > 0.3 R E and in the -y direction at Izl < z o.

Although not as obvious, all groups of trapped ions carry a similar

current distribution.

4. Generation of Model Current Sheets

This section presents sample results from nine runs using the

COT technique. The thin, standard, and thick magnetotail models

were each used for three runs. For each maguetotail model, one
plasma sheet was generated using monoenergetic 1.5 keV, one

using 5 keV, and one using 15 keV starting proton energies. Ions

are energized as they drift in the uniform Ey = 0.3 mV/m or 1.9
kV]R E electric field. However, the ions in an initially monocner-

getic group remain concentrated in a relatively narrow energy band

at any one location, so that a single orbit type tends to dominate.

Distribution Functions

The calculations used twenty 0.1-R E thick z boxes in the range 0

< Izl < 2 RE. The model is symmetric about z = 0, so orbital infor-
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Figure 5. Three projections of one proton orbit in the standard
magnetotaii model. Tracing started with a 15-keV proton at (-14.5,
o, O)Re.

mation at equal distances above and below z = 0 were combined in

these 20 boxes. Six I-R E wide x boxes in the range -20 R E < x <

-14 RE were used at each z. Since there is very little y dependence

in this region of interest, only one y box extending to y = +10 RE

was used. As a result, distribution functions were generated for a

total of 120 spatial boxes. We refer to this set of runs as two dimen-

sional because of the lack of significant y dependence even though

all calculations and binning are fully three dimensional. Although

no useful information would be gained by keeping multiple y boxes

for the present runs, several y boxes are retained when either y

dependence is added to the equilibrium tail module or when distri-

bution functions are needed near or sunward ofx = -10 R E.

Two methods were used to calculate the ion number density

n i (x, z) and current density Ji (x, z) . The point at which each

box was entered was determined accurately during orbit tracing.

New orbit points were introduced at each box edge crossing point

so that all orbit segments remained within one of the 120 spatial

boxes. Use of the efficient Bulirsch-Stoer tracing algorithm made

step sizes so large that linear interpolation was not adequate for the

curved trajectories. The new techniques described below removed

the anomalies at certain pitch and phase angles that were noted by

Kaufmann and Lu [1993]. The most serious problem in our earlier

study involved the generation of distribution functions by counting

particles only when they crossed a plane surface. With large step

sizes, the distribution functions generated by this method had

anomalously low values when the velocity normal to the detector
was small.

The first technique involved keeping track of the total time

spent and the total distance that all particles in a group traveled in

the x, y, and z directions while they were inside each box. Density

is proportional to this time and Ji (x, z) is proportional to the dis-

tance. Eastwood [1972] and Kaufmann and Lu [1993] described

the use of this method. The resulting Ji (x, z) includes all ion guid-

ing center drift, magnetization, and nonguiding center currents.

For the second technique, velocity space was divided into 30 x

30 x 30 boxes in the v x, vy, and v z directions. The result is a

27,000-point velocity distribution function for each of the 120 spa-

tiai boxes. The distribution functions were generated by adding the

time spent when taking each step along a trajectory into two of the

27,000 x 120 velocity-spatial boxes, with half the time for each

step placed into the initial and half into the final velocity box for

this step. Integrating the distribution function gave essentially the

same n i (x, z) and Ji (x, z) as was obtained by the first method.

Adding in the electron current, described below, gave the total

j (x, z) in each box.

Sample Case

A set of 30 groups of 1000 ions were traced for each of the nine

cases noted above. The angular distributions all were selected so

that f(r, v) would have been isotropic if the ions had started in a

uniform B. An actual f(r, v) may be anisotropic even in the start-

ing box because ions can return to this box with different pitch

angles. For any one of the nine runs, the 30 groups of ions all
started with the same energy, which was 1.5 keV, 5 keV, or 15 keV.

The only difference between the 30 groups in any one run was the

location at which orbit tracing began. The starting points were z =

0, 0.5, 1.0, and 1.5 RE at the centers of each of the six x boxes, plus

at z = 2.0 on field lines that crossed the equator at the centers of
each x box.

The three columns in Figure 6 show the cross-tail components

of the ion, electron, and total ion-plus-electron group currents for

the thick-5 keV case. Figures 6a through 6e show currents from
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Figure 6. (a) - (e) Cross tail currents carried by groups of 1000 ions, their accompanying electrons, and by the total

ion-plus-electron groups. The thick magnetotail model was used. (f) Weighted sum of Figures 6a to 6e. The solid

curve in the group jy column is the current needed to produce a consistent magnetotall.

five groups of 1000 particles, and Figure 6f is a weighted sum of

Figures 6a through 6e. For example, the ion jy panel in Figure 6a
shows the current carried by a group of 1000 ions that were started

at x = -15.5 R E, z = 0. The smooth solid curve in the group jy col-
umn of Figure (if shows the cross-taft current that is needed to gen-

erate the model magnetic field.
The horizontal axis of each panel in this figure is divided by tick

marks into six blocks associated with the six different x boxes. The

block at the left side of each panel, labeled -19.5, includes all

information for the range -20 R E < x < -19 RE. The block at the

fight side of each panel, labeled - 14.5, corresponds to - 15 R E < x <

-14 R E. Within each x block are 20 points representing increasing z

values in the range 0 < Izl < 2 RE. The smooth curve in the groupjy

column of Figure (if shows that the jy (x, z) which is needed to
generate • is largest at z = 0 in each x box, and drops monotoni-

cally as z increases to 2 RE. This panel also shows that larger cur-
rents are needed in x boxes closer to Earth. The 5-keV row in

Figure 7 shows the same information as is in the group jy panel in
Figure 6f. The six x boxes are plotted separately and labi;led more

completely in Figure 7.

A number of assumptions were made to calculatethe current

carried by Maxwellian electrons. Most of these assumptions have

already been described because they were used in the I-D calcula-

tions [Kaufmann andLu, 1993]. A polynomial fit was made to both

nI (x, z) and the average ion energy for each group traced. The

electron number density n e (x, z) was set equal to the polynomial

fit to n I (x, z) so the resulting plasma would be approximately

neutral. Since n e would be constant along field lines if electrons

were isotropic at the equator, a first-order parallel electric field was

added to the zeroth-order uniform Ey. The Boltzmann relation

n_(x, z) = n_(Xo, zo) exp [--qe$/T_] (2)

was used to calculate the electric potential difference $

between each (x, z) box and a reference point (Xo, Zo) on the

same field line. The average electron energy or 3/2 Te was

taken to be 1/7 of a polynomial fit to the ion group average

energy [Baumjohann et al., 1989]. Since electrons are much

less energetic than ions, electrons were influenced much more

strongly by the parallel electric field than were ions. Equation
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(2) only gives the distribution of ¢ along a field line, so only

determines the parallel electric field. Since Ell is distributed

differently along adjacent field lines, some E.L in the x-z plane

must also be present. We used a variational approach to deter-

mine this E j_. It was assumed that EL will develop so that the2
energy density cog is minimized. This assumption com-

pletes the definition of E. The total potential drop between z =

0 and z = 2 RE was no more than 200 V. This potential differ-

ence is similar to the values obtained in our previous 1-D

model. Some groups of ion orbits were traced again in the

magnetic field with this added Ett. The small potential drop

had very little effect on the ion jy (x, z) distribution.
The !¢ for each group of electrons is 11 times the • for the asso-

ciated proton group, so all electron motion is well approximated by

the guiding center assumptions in the models studied here. The

electron cross-field current was calculated from (1) based on the

polynomial fits to n e (x, z) and an isotropic Pe (x, z) = neT e .

This procedure yielded the electron jy (x, z) for each group, as
shown in the middle column of Figure 6. The addition of electron

and ion currents gave the total jy (x, z) for each group, as shown

in the right column of Figure 6.

The above procedure, which assumes isotropy and the presence

of Ell, is not the only one that could be used to include electrons.

Instead, it is possible to produce charge neutrality along field lines

with Ell ffi 0 by adjusting the angular distribution of electrons at

the equator. Substantial electron anisotropies involving TII > T L
have been observed in the central plasma sheet [Hada et al., 1981;

Paterson et al., 1995], though most observations have reported

approximate isotropy at z = 0. In the guiding center approximation,

a biMaxwellian distribution at the equator yields a density varia-

tion along a field line of

n (B) = n°TII
T. L+ (TII _ T.L) (Bo/B) exp [-qCp/Tii] (3)

where n o and B o are the particle density and IBI at the equator.

When Ell = 0 or (_ = 0 everywhere, the density varies by a fac-

tor of Tit/T ± as one moves from the equator to the iono-

sphere.
When the particle density is known all along a field line, it is

possible to calculate the angular distribution needed for charge

neutrality with Ell = 0 throughout the region where the guiding

center equations are valid. However, we retained density informa-

tion only in the previously defined region of interest, so do not

have densities all the way down to the ionosphere. One model in

which the ion density changes rapidly along a field line will be

shown later. An electron distribution with very abrupt pitch angle

variations would be needed to maintain charge neutrality in this

case if Ell = 0. The method used in the present analysis is easy to

implement and results in reasonable distribution functions for all

cases studied. Since electron cross-tail currents are small in sheets

with the thicknesses used here, this simple method should be ade-

quate.

Current Distributions

It is clear that none of the individual groups shown in Figure

6a-6e carried a current distribution that is even remotely similar to

the current needed for self-consistency. This observation was valid
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for each of the 30 groups of particles traced in each of the nine

cases studied. However, a weighted sum of several groups often

can produce a reasonable approximation to the necessary

jy (x, z) . The final current density obtained by linearly combining
the five groups in Figure 6a-6e is shown by the dashed line in the

group jy panel of Figure 6f and in the 5-keV row of Figure 7.

Current distributions produced by the individual ion groups in

the ion jy column of Figure 6 show the typical patterns that were
described qualitatively in the discussion of individual orbits. For

example, many figure eight and other trapped orbits appear in the

group of particles shown in Figure 6a, which started at z = 0 at x =

-15.5 RE. This is the second of the six x blocks from the right. The

resulting ion current shows the typical trapped particle signature

involving negative jy at z = 0 and positive jy beyond zo, which is
near or below 0.3 R E for 5 keV protons in the region of interest.

The above current pattern is dominant in the starting and adjacent x

boxes (three rightmost blocks in the panel) because many particles

remain trapped for only a few current sheet interactions. Similarly,

the ion jy panel in Figure 6c shows the current carried by ions that
started at z = 0, x = -17.5 RE. The characteristic trapped particle

jy (x, z) pattern here appears in the more distant x boxes (blocks
on the left side).

There is a net drift of all trapped ions in the positive y direction,

as noted previously. The net positive current can be seen in Figures

6a and 6c because the area under the positive jy spikes is a little

larger than the area under the negative spikes. However, the struc-

ture of jy (x, z) clearly is dominated by the sharp positive and
negative peaks, which are associated with magnetization currents,

rather than by a small relatively uniform positive jy at Igl < 0.5 RE

that would be predicted by (1) for an isotropic distribution.

Ions in Figure 6e were started at z = 2 R E on a field line that

crosses the equator at x = -19.5 R E. These ions all have initial mir-

ror points outside the current sheet. The ions carry cross-tail cur-

rent that is strongly confined near z = 0 when they first bounce off

the current sheet, in x boxes near the left side of the ion jy panel in
Figure 6e. The current is less well confined during succeeding

bounces at lower altitudes because some ions mirrored closer to z =

0 or became trapped. In addition, ions with low altitude mirror

points usually have drifted several Earth radii earthward before

they return to z = 0. This jy (x, z) structure is typical of any group

of particles that is selected to be generally isotropic far from z = 0,

regardless of the particle's r or dynamical characteristics. The

principal difference between particles on chaotic and resonant

orbits is that resonant particles would maintain low mirror points

for several bounces, so the pattern of narrow regions with strong

positive jy would be more extended in the x direction. A chaotic

particle group would not continue to be dominated by particles

with low mirror points after one or two current sheet interactions.

Figures 6b and 6d show currents carded by ions that started

with an isotropic distribution at z = 0.5 RE, with x = -15.5 and

-17.5 R e respectively. These groups are dominated by ions which

mirror somewhere in the outer portion of the current sheet, beyond

z = 0.5 RE. The associated jy patterns tend to be complex, but are
reproduced by other randomly selected groups of 1000 ions, even

down to small details. Trapped ions with mirror points throughout

the current sheet are needed to broaden the current carried by

5-keV protons so they can produce a sheet that is thicker than the

region associated with meandering orbits.

As noted above, none of the individual ion groups has ajy struc-

ture that is similar to the goal, as shown by the solid curves in the

group jy panel of Figure 6f and in the 5-keV row of Figure 7. For

example, the low mirror point group (Figure 6e) produces much

too thin a current sheet. However, if some of the trapped particle

group currents (Figures 6a and 6c) are added, it will decrease the

positive current very close to z = 0 and add some positive current at

larger Izl. This is the procedure used in the COT technique, as

described previously [Kaufmann and Lu, 1993].

A linear combination using all 30 particle groups that were

traced for each of the nine cases studied would yield the best least

squares fit to the jy (x, z) that is needed to generate a consistent

magnetic field. However, a principal goal of this study was to see

which orbit types were essential for the production of a consistent

current sheet. For this reason, only those groups that improved the

fit at a 95% confidence level were retained. Positive weighting

coefficients were required for each group. Of the 30 groups gener-

ated for each case, no more than nine and no fewer than five groups

were selected after imposing these requirements. The thick 5-keV

case shown in Figure 6 was used as an illustration, even though the

final fit was one of the poorest, because it was the one with the few-

est groups in this final fit.

Figures 7-9 show how closely the model jy (x, z) compares to

the desired jy (x, z) that is needed for self-consistency for each of
the nine cases studied. This is the most critical step in the COT pro-

cedure, and the validity of the technique depends upon our ability

to find consistent solutions which also agree with observations for

nearly all preselected current sheet structures. The existence of a

permanent current sheet in the magnetotail suggests that it is possi-

ble to find some such distribution of particles, though not necessar-

ily with groups of particles which all have the same starting energy.

The jaggedness of the nine least squares fits is a consequence of the

summation of only five to nine nearly monoenergetic particle

groups. Smoother results are obtained in other runs using Max-

wellian distributions and distributed injection points.

The 15-keV results in Figures 7-9 show good agreement with

the required jy for all three magnetic field models. However, aver-
age ion energies are observed to be closer to 5 keV in the typical

quiet magnetotaii. The thin and standard magnetic field model

results using 5-keV starting energies yieldedjy that is in reasonable

agreement with that needed for consistency (Figures 8 and 9).

However, we did not find 5-keV ion groups that carried jy over a
sufficiently broad range in z to match the currents needed in the

thick model at large Ixl. Problems in finding jy (x, z) that have the
desired z dependence also are evident in the 1.5-keV results, partic-

ularly beyond x =-17 R E.

Part of the fitting problem may be associated with our use of the

equilibrium tail module as the dominant contribution to the mag-

netic field in our region of interest. The module was selected

because it is known that this field can be generated by an isotropic

distribution function. However, the distribution functions from

which the entire set of equilibrium tail modules were derived con-

tain unrealistic properties. One property that is in disagreement

with observations is the uniform cross-tail drift velocity at all x and

z that is assumed when deriving the equilibrium modules [Harris,

1962; Schindler, 1972; Kan, 1973]. In contrast, observations and

our COT results have the largest vy near z = 0. Burkhart and Chen

[1993] pointed out the unrealistic thickening of the distant tail cur-

rent sheet in this set of models. The complete fields, which have

been produced by selecting parameters and adding several modules

to fit T89 (Figure 1), do not show a dramatic thickening. Neverthe-

less, the difficulty in finding ions which will generate a thick

enough current sheet in the more distant portion of our tail models

may be associated with this unrealistic property of the equilibrium

tail module. A final unrealistic assumption used when developing

the equilibrium tail module was that a frame exists in which E = 0
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everywhere. No such coordinate system exists in a 2-D or 3-D tail 2

if Ey is uniform in the Earth frame.

A different type of problem is caused by our use of monoener-

getic particle groups. It is hard to find any completely monoener-

getic group that carries significant jy near Izl = z o. Reasonable fits

were found in most cases because there is a substantial spread of

energies in the final COT distribution functions, which are _:_ 0-

weighted sums of five to nine groups. Particles were all started N

with a given energy, but each group is started at a different loca-

tion. The energy of each particle changes as it drifts to a desired

observation point.

One important result is that, in all nine cases studied, at least

one group dominated by each of the three orbit categories that 0

carry distinctive jy (x, z) distributions had to be retained. The -19.,'
COT technique therefore was unable to generate a current sheet

with the desired thickness using generally isotropic ions with the 2
observed energies unless particles mirroring near the Earth, parti-

cles trapped near z = 0, and particles mirroring throughout the prin-

cipal current sheet were present. Some 1-D models have been

produced using only untrapped particles that are injected at large

Izl, but the generally isotropic 2-D and 3-D models appear to also

require trapped particles and particles with cucumber orbits.

5.Fluid Parameters

A full ion velocity distribution function was saved for each of

the 120 spatial boxes. Various moments off/(r, v) were evaluated

to calculate the ion density, bulk flow velocity, and other parame-

ters. This section discusses the parameters that are easiest to com-

pare with published satellite measurements. It should be

emphasized that the least squares fitting routine that determined

which groups to keep used only jy (x, z) to set weighting factors.
The other parameters that were preselected for each run were the

magnetic and electric fields, the ion starting energies, an isotropic

starting pitch angle distribution, and the i/7 ratio of electron to ion

energies. No other adjustments were made to any of the parameters

discussed in this section in an attempt to obtain agreement with

observations.

Density and Parallel Electric Fields

The solid lines in Figure 10a are contours of constant n i (x, z)

and the dashed curves are magnetic field lines. Baumjohann et al.

[1989] binned AMPTE/IRM data according to satellite location

and the AE index. The two spatial bins that are most relevant to our

model of the current sheet were together referred to as the inner

CPS. The region closest to the neutral sheet was defined by Bxy <
2 2 2

7.5 nT, where Bxy = Bx + By, and will be referred to as the inner
current sheet. The portion of the inner CPS farther from z = 0 was

defined by 7.5 < Bxy < 15 nT, and will be referred to as the outer
current sheet. The AMPTE/IRM satellite did not make measure-

merits at the statistically averaged location of the neutral sheet

[Fairfield, 1980] in our region of interest during the 1986 magneto-

tail data collection periods. However, many neutral sheet crossings

were observed when the neutral sheet was displaced from its aver-

age location. The entire plasma sheet is known to undergo substan-

tial motion in the z direction. No obvious dependence of plasma

parameters upon the neutral sheet displacement from its average

location was noted in a brief comparison with 1985 data, which

had better orbital coverage. The inner CPS data show an average

density of about 0.3 cm -3 with little z dependence.

Kistler et al. [1993] sorted AMPTE/IRM data taken at radial

distances beyond 15 RE according to substorm phase and to dis-

:, .......
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l:z:_1-
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Figure 10. (a) Contour plot of lines of constant density in
ions/cm -3 for the standard 5-keV model. Dashed curves are mag-

netic field lines. (b) Contour plot of the average ion energy in keV
for the standard 5-keV model.

tance from the neutral sheet. This study used a more complex

method to estimate distance from the neutral sheet. The plasma 13,

or ratio of particle to magnetic field pressures was determined for

each data point. The highest 13 is expected near z = 0, and the low-

est 13in the lobes. Points were binned according to I_ into 3 groups,

labeled inner, middle, and outer plasma sheet. With respect to sort-

ing by substorm phase, it is most reasonable to compare our quiet

time model to data taken before substorm onset. Densities were

about 0.4 cm -3 in the inner and middle third, and about 0.2 cm -3 in

the outer third of the plasma sheet (L. Kistler, private communica-

tion, 1995).

Huang and Frank [1994b] sorted ISEE 1 data according to dis-

tance from the Gosling et al. [1986] average neutral sheet location.

The satellite orbit provided good coverage of this neutral sheet

region. The average observed density was approximately 0.25

cm -3 during both quiet and disturbed times, with little consistent z

dependence.

The above measurements involved statistical averages over a

number of orbits. An absolute distance scale was not determined in

these statistical treatments. For example, it usually was not known

when the satellite was exactly 0.5 RE, 1.0 R E, 1.5 RE, or any other

specific distance from the center of the neutral sheet. Only a few

analyses have been carried out that determined the instantaneous

structure of the current sheet during quiet conditions in our region
of interest. These studies measured the current sheet structure

using both ISEE 1 and 2 spacecraft. Of these, we could find only
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two that also described plasma density and temperature variations

within the current sheet, McComas et al. [1986] studied three

crossings that were associated with the passage of a strong inter-

planetary shock front. It was concluded that the plasma density,

temperature, and pressure changes were consistent with approxi-

mate plasma plus magnetic field pressure balance. However, tem-

poral changes in the current sheet structure and orientation were so

large during this orbit that it was not possible to determine a con-

sistent density or temperature profile. Zhou et al. [1995] found two

periods during which a number of current sheet crossings took

place with the spacecraft well positioned to measure density and

temperature gradients. They concluded that both density and tem-

perature decreased by a factor of two as the spacecraft moved 1.5

current sheet thickness scale lengths from z = 0. The average half

thicknesses on this orbit were 2 R E when the IMF pointed north-

ward and 0.5 R E when the IMF pointed southward.
The COT standard 5-keV model number densities nearest the

neutral sheet (Figure 10a) are close to or slightly below the

observed values. The dropoffof n (x, z) with increasing z is simi-

lar to that measured by Zhou et al. [ 1995] but more rapid than the

dropoff suggested by the statistical studies. The model density

depends on the starting ion energies used. Densities for the stan-

dard model were 3 to 4 times larger when 1.5-keV protons were

used instead of 5-keV protons, and about half as large as in Figure

10a when 15-keV protons were used. The density in the thick

model with 5-keV protons was similar to that in Figure 10a, while

densities near z ---0 were about 50% larger in the thin 5-keV model.

Our earlier self-consistent 1-D model used 3-keV protons [Kauf-

mann and Lu, 1993] and required particle densities as high as the

2-D model with 1.5-keV protons.

Figure 10a shows that the model ion density is nearly constant

along magnetic field lines near z = 0, and that the density increases

slowly as one moves earthward along a field line beyond z = 1.5

R E . However, the density increases rapidly as one moves earth-

ward in the 1 R e < z < 1.5 R E region. As described previously,

charge neutrality was maintained in the model consisting of isotro-

pie electrons and nonguiding center ions by introducing a parallel

electric field. Very abrupt changes would be required in the equato-

rial pitch angle distribution of electrons on these field lines if the

equally rapid drop in electron density that is needed to maintain

charge neutrality were to be produced by mirror effects with Ell =

0. The density changes seen along field lines at z < 1 RE and at z >

1.5 R E in Figure 10a were typical of the changes seen throughout

the region of interest for the other eight cases studied. No other

case showed as large a field-aligned density drop as that seen at 1

R E < z < 1.5 RE in Figure 10a.

Thermal Energies

Figure 10b shows the average ion energy for the standard 5-keV

model. Baumjohann et al. [1989] observed an average inner

plasma sheet temperature of 4 keV in the region of interest, with

slightly lower values during quiet times. Huang and Frank [1994b]

found average temperatures of 3-4 keV during quiet times, and up

to 7 keV during disturbed times. The temperature was higher in the

inner than in the outer plasma sheet. L. Kistler (private communi-

cation, 1995) found temperatures dropping from 4 keV in the inner

plasma sheet to 2 keV in the outer plasma sheet before substorms.

Zhou et al. [1995] found approximately a factor of two drop in

temperature when moving 1.5 thickness scale lengths from z = 0. A

temperature of 4 keV corresponds to an average ion energy of 3/2

T _ 6 keV. Figure 10b shows average energies rather than tempera-

tures because monoenergetic groups were used.

The calculated average energy in the region of interest dropped

from about 7 keV to about 3.5 keV, which is close to the observed

temperature variation. Since the starting ion energy is one of the

preselected parameters, the average energy in the model can easily

be changed. As noted above, lower energies will increase the

required density, so a small decrease in the starting energy to below

5 keV would slightly improve the agreement with both the mea-

sured n (x, z) and T (x, z) .

The observed plasma _ or particle/field energy density ratio

[Baumjohann et al., 1989] dropped from approximately 20 in the

neutral sheet region to 3 in the outer current sheet, and to 0.3 in the

outer plasma sheet. Results from all nine of the cases studied here

showed decreases from [3 = 20 - 100 at z = 0 to _ = 0.1 - 0.5 at z = 2

R E. The detailed dropoff depended weakly on the panicle energy

and magnetic field models used. All cases therefore showed rea-

sonable agreement with observations.

Bulk Flow

Finally, Figure 11 shows the model ion bulk flow velocity

Via (r) = (l/n) jv a f/(r, v) d3v (4)

Detailed examination of fi (r, v) shows that two features con-

tribute to this bulk flow. The principal cause of Viy is an asym-
metry in the nearly monoenergetic spherical phase space shell

of ions in our model. Ions going to the east and west have the

same energies, but there are more going westward. This

behavior is associated with the large westward displacement

of ions, especially near z = 0, that is evident in Figures 2 and

3. This net positive Viy produces most of the cross-tail current,

with eastward electron drift causing the rest. It is interesting to

note that the model Viy carried by a realistic particle distribu-

tion decreases with increasing Izl even though the dominant

equilibrium tail field module was developed using a uniform

V,y
The nature of Voc shown in Figure 11 is substantially different.

This component is primarily field aligned except very near z = 0,

where V/x is mostly E x B drift. The model distribution function

away from z = 0 shows that the entire spherical shell experiences a

net shift in the positive Vtt direction, so that ions moving earthward

are slightly more energetic than are those moving tailward. A less

important angular asymmetry also is sometimes seen in the oppo-

site direction, with a larger number of ions moving tailward than

earthward. This small angular asymmetry reduces the net earth-

ward V/x, particularly near z = 1 R E in Figure 11. A decrease in V/x

somewhere near z = I R E was seen in most of the nine cases stud-

ied. A positive V/x is commonly seen in our region of interest in

both AMPTE/IRM [Baumjohann et aL, 1989] and ISEE 1 [Huang

and Frank, 1994b] data.

In a I-D model, the uniform Ey = 0.3 mV/m field is transformed
to zero in the deHoffman Teller reference frame which moves

earthward at a speed Ey/Bzo. The z component of B is uniform in a

I-D model. There is no reference frame in which this uniform Ey is

transformed to zero everywhere in 2-D or 3-D models. Ions near z

- -19.5 R E in the nine models used here drift earthward at a speed

that is about 25% less than Ey/Bzo based on B z at z = 0. The speed

Ey/Bzo atx = -19.5 RE is about 140, 120, and 85 km/s in the thick,

standard, and thin models, respectively. At x = -14.5 RE, the model

V/x was only about 10% less than Ey/Bzo, which equaled 85, 75,

and 65 km/s respectively in the three models. We therefore con-

clude that EylBzo produces approximate but not accurate estimates

of V/x in 2-D or 3-D models.
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Figure 11. The x, y, and z components of the ion bulk velocity for the standard 5-keV model.

The single particle orbits show the physical origin of the strong

field-aligned drift. The effect is produced primarily by ions that
mirror within the current sheet. For example, the ion in Figure 2a

moved approximately 5 REearthward, generally along B, as it went
from x = -19 RE, z = 0.5 RE to a mirror point at x = -14 RE. The ion
then moved only about 2.5 RE tailward from the mirror point, pri-
marily along B, until it returned to z -- 0.5 RE. The net 2.5 Re earth-
ward motion at z > 0.5 R E contributes to a generally field-aligned
bulk flow. Other examples are evident in Figures 2c and 3a.

A small net drift toward z = 0 is seen in the model giz. This is
primarily E xB drift in the negative z direction, though
field-aligned drift also provides a positive contribution to Vz. The

model Ey = 0.3 mVhn electric field produces a 20 km/s drift toward
z = 0 in a region with Bx = 15 nT. Electrons and ions E x B drift in
the same direction, so these contributions to the current tend to
cancel in the outer current sheet, where the guiding center approxi-
mations are valid.

Although it does not affect the COT analysis, which is based

only on jy, electrons were assumed to drift along field lines at the
same speed as ions. This assumption was needed to make
V. j = 0 for electrons, and also so there would be no Birkeland
current. No field aligned current is expected in the present steady
state model with essentially no y dependence in the region of inter-
est.

6. Discussion and Summary

The Consistent Orbit Tracing (COT) technique was described.
The principal steps were: select a number of proton groups, trace
orbits of the 1000 protons in each group, evaluate the cross-tail
current carried by each group of ions plus their associated elec-

trons, and combine these groups so that they produce a nearly con-
sistent current sheet. In a consistent current sheet, the ions and

electrons carry the current needed to generate the magnetic field in
which the orbits were traced.

A set of nine COT analyses were carried out using 3 proton
energies (1.5, 5, and 15 keV) for each of three magnetic field mod-
els. Characteristic current sheet thickness scale lengths varied from
0.3 RE to 1 RE in the models used. Selection of these thicknesses
was guided by the few available observations of the instantaneous
structure of a steady magnetotail current sheet. The adiabaticity
parameter Jc ranged from 0.3 to 0.65 in the -20 RE < x < -14 RE
region of interest. A uniform zeroth order cross-tail electric field
was present in all calculations. A first order parallel electric field
was added to maintain charge neutrality.

An earlier study using a 1-D modified Harris magnetic field
model [Kaufmann and La, 1993] was unable to generate a current
sheet that agreed with observations in the region of interest. The
introduction of a 2-D equilibrium tail module, which has both x
and z dependence, removed the inconsistencies found in the earlier
1-D analysis. It was possible to generate nearly consistent current
sheets for most of the magnetic field model and particle energy

combinations. Adequate solutions were not found when attempting
to combine the thicker model current sheets and ions with energies
that were lower than those typically observed in the region of inter-
est.

The results of this analysis support the postulate that in
sheet-likestructures,currentiscarriedmostlyby particleswith

Bzo/Bxo < g < 1, where Bxo is Bx in the lobes and Bzo is Bz at z =
0. The lower limit on K is needed for consistency in a modified
Harris I-D model field. It is based on the need to confine current

within the current sheet in any consistent model. In the present
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study we found it difficult to create a consistent current sheet using

particles with ): > 1, The ring current magnetic field is generated

primarily by particles inside the Earth, so r > 1 particles can domi-

nate in the radiation belts.

Burkhart et al. [ 1992] carried out a consistent orbit tracing study

for a 1-D magnetotaii. Their treatment was different from that used

here in that it involved a fixed source of particles injected at the

edge of the current sheet. The magnetic field was allowed to

change until consistency was attained. The model therefore had

few trapped particles. The resulting current sheets were very thin,

with small r and a scale size of approximately z o. Burkhart et al.

[ 1992] concluded that this type of current sheet could not be gener-

ated when )c approached 1.

Ashour-Abdalla et aL [1993, 1995] used a 2-D version of the

I"89 model for a series of orbit tracing studies. They used a fixed

source in the mantle for these large-scale kinetic (LSK) models. A

goal was to demonstrate that a reasonable magnetotail could be

generated using only a mantle source. The particles were followed

as they drifted all the way in from the distant tail through our

region of interest. There were so many chaotic interactions with the

current sheet that all orbit categories became populated by the time

particles reached our region of interest.

The final model was found to be nearly in force balance, even

though the model was not really consistent because both the parti-

cle source and the basic fields were preselected. Calculated cur-

rents tended to be carried in a sheet that is thinner than would be

needed to generate the T89 field. The density profile was qualita-

tively similar to our Figure 10a, though the drop-off in z was

slower than in our results. Earthward drift was slower than in our

model because the LSK calculations were run with an 0.1 mV/m

cross-tail field, while our COT calculations used 0.3 mV/m. The

cross-tail drift velocities were comparable in the two models, as is

required to support the comparable lobe fields.

A principal goal of the present study was to use individual parti-

cle orbits to better understand how particles carry current in a

sheet-like structure, All ions in each group were started with the

same energy so that the group would be dominated by a particular

type of orbit. Particle orbits previously have been classified accord-

ing to the dynamical properties of the particles. Guiding center,

chaotic, and resonant orbits are examples, Instead, orbits in this

work were grouped according to the characteristic spatial distribu-

tion of cross-tail current carried by the particles. This resulted in

three orbit categories: particles that remain near z = 0 (trapped

orbits), particles that spiral and then magnetically mirror elsewhere

in the principal current sheet (cucumber orbits), and particles that

magnetically mirror closer to Earth (Speiser orbits). Consistent

current sheets required the use of all three orbit categories in each

of the nine cases studied.

A study of single ion orbits showed the features that resulted in

the characteristic jy (x, z) pattern carded by particles in each orbit

category. Magnetization currents produced most of the structure

and characteristic scale of the magnetotail current sheet. Substan-

tial earthward drift was found in the COT results. This was attrib-

uted to particles mirroring within the current sheet. Such particles

were seen to drift farther earthward than tailward along field lines

during a bounce period.

A number of assumptions were introduced in order to include

electrons. Some of these assumptions were needed to satisfy basic

requirements of the steady state model, such as charge neutrality

and conservation. Other assumptions, such as the ratio of electron

to ion energy, were based on observations. Electrons with the ener-

gies used here obeyed the guiding center approximations through-

out the region of interest in all three magnetic field models.

Cross-tail electron currents were relatively small in the model
current sheets studied here. Electron current can be much more

important in a thinner current sheet. Extremely thin current sheets

have been observed just before and just after substorm onsets

[Mitchell et al., 1990; Sergeev et al., 1993; Hesse et al., 1995;

Pritchett and Coroniti, 1995]. The present work did not attempt to

model such situations.

The COT analysis produced an ion distribution function for

each of the 120 spatial boxes used in this study. The distribution

functions were integrated to evaluate fluid parameters. Three of the

simplest parameters: the ion density, temperature, and bulk flow

velocity, were in good agreement with observations. Comparisons

of other fluid parameters, a study of force balance, and an analysis

of energy fluxes will be presented in the future.
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